مدل سازی آبشستگی اطراف آبشکن در قوس ها با استفاده از منطق فازی و شبکه عصبی مصنوعی
نویسندگان
چکیده
آبشکن سازهای است از جنس سنگ، شن، پاره سنگ، خاک و یا بتن که با زاویهای نسبت به کرانه رودخانه جهت انحراف جریان آب از سواحل به مرکز آن به منظور جلوگیری از آبشستگی سواحل احداث میشود. از جمله مشکلات مهم مربوط به این سازه که ممکن است پایداری آن را به خطر اندازد، آبشستگی اطراف آن میباشد. لذا مدلسازی میزان آبشستگی اطراف این سازه بر اساس شرایط جریان از اهمیت بالایی برخوردار میباشد. در این تحقیق دادههای آزمایشگاهی آبشستگی اطراف آبشکن در قوس 180 درجه جهت مدلسازی این پدیده با استفاده از منطق فازی(flm) و شبکه عصبی مصنوعی(ann) بکار گرفته شد. آبشستگی به صورت تابعی از طول آبشکن، زاویه نصب اپی در قوس و عدد فرود جریان بالادست مدل شد. نتایج حاصل نشان داد که مدل شبکه عصبی مصنوعی و منطق فازی با دقتی بالا و نسبتا یکسان قادر به پیشبینی این پدیده میباشند. همچنین یک رابطه رگرسیونی برای آبشستگی اطراف آبشکن با استفاده از سری اطلاعات مورد استفاده جهت ساخت و کالیبره کردن مدلهای flm و ann استخراج گردید. سپس مقایسه ای بین نتایج مدلهای flm ،ann و رابطه رگرسیونی استخراج شده با استفاده از سری اطلاعات دیگری که در ساخت این مدلها مورد استفاده قرار نگرفته بود، صورت پذیرفت.
منابع مشابه
مدل سازی آبشستگی اطراف آبشکن در قوس ها با استفاده از منطق فازی و شبکه عصبی مصنوعی
آبشکن سازهای است از جنس سنگ، شن، پاره سنگ، خاک و یا بتن که با زاویهای نسبت به کرانه رودخانه جهت انحراف جریان آب از سواحل به مرکز آن به منظور جلوگیری از آبشستگی سواحل احداث میشود. از جمله مشکلات مهم مربوط به این سازه که ممکن است پایداری آن را به خطر اندازد، آبشستگی اطراف آن میباشد. لذا مدلسازی میزان آبشستگی اطراف این سازه بر اساس شرایط جریان از اهمیت بالایی برخوردار میباشد. در این تحقیق د...
متن کاملمدلسازی آبشستگی اطراف آبشکن در قوسها با استفاده از منطق فازی و شبکه عصبی مصنوعی
آبشکن سازهای است از جنس سنگ، شن، پاره سنگ، خاک و یا بتن که با زاویهای نسبت به کرانه رودخانه جهت انحراف جریان آب از سواحل به مرکز آن به منظور جلوگیری از آبشستگی سواحل احداث میشود. از جمله مشکلات مهم مربوط به این سازه که ممکن است پایداری آن را به خطر اندازد، آبشستگی اطراف آن میباشد. لذا مدلسازی میزان آبشستگی اطراف این سازه بر اساس شرایط جریان از اهمیت بالایی برخوردار میباشد. در این تحقیق د...
متن کاملبررسی توسعه زمانی آبشستگی اطراف آبشکن های نفوذناپذیر در کانال مستقیم و پیش بینی آن با شبکه های عصبی مصنوعی
این مقاله فاقد چکیده میباشد.
متن کاملپیش بینی تغییرات عمق آبشستگی در اطراف گوشوارهی پلها ) (Abutmebt با استفاده از سامانهی منطق فازی- عصبی ) (ANFIS و شبکه های عصبی (ANNs)
بهدلیل پیچیده بودن الگوی سه بعدی جریان در اطراف گوشوارهی پل ها، برآورد دقیق تغییرات عمق آبشستگی نسبت به زمان دشوار، و در برخی موارد غیر ممکن میباشد. در این تحقیق، ابتدا تغییرات عمق آبشستگی در اطراف گوشوارهها به صورت آزمایشگاهی تحت شرایط آب زلال مورد بررسی قرار گرفته است و سپس با استفاده از نتایج حاصل از سه روش، وایازی غیر خطی (NLR)، شبکههای عصبی (ANN) و سامانهی منطق فازی-عصبی (ANFIS)، تغی...
متن کاملبررسی عملکرد شبکه های عصبی مصنوعی در برآورد بیشترین ژرفای آبشستگی پیرامون آبشکن ها
یکی از عوامل اصلی ویرانی آبشکن ها آبشستگی می باشد که فرآیندی بسیار پیچیده است. پیچیدگی الگوی جریان پیرامون آبشکنها و گوناگونی عوامل مؤثر بر آبشستگی، موجب پرشماری روابط تجربی و کاهش دامنه ی هر یک از آنها، به دلیل محدودیت شرایط آزمایشگاهی می شود. در این تحقیق امکان استفاده از شبکه های پرسپترون چندلایه(mlp) برای برآورد بیشترین ژرفای آبشستگی پیرامون سه نوع آبشکن شامل آبشکنهایی با دیواره ی عمودی، با...
متن کاملکاربرد شبکه عصبی مصنوعی در تخمین عمق آبشستگی اطراف پایه پل در بستر با رسوبات چسبنده
بیشتر آسیب پلها به دلیل آبشستگی اطراف پیهای آن در طول سیلاب هستند. بنابراین برای حداقلسازی احتمال خرابی، یک مدل بهبود یافته برای تخمین عمق آبشستگی اطراف آنها لازم است. به دلیل اینکه آبشستگی در پایههای پل یک تابع پیچیده از مشخصات مصالح کف، ویژگیهای سیال، مشخصات جریان و هندسهی پایه است، معادلات تجربی توانایی تخمین دقیق عمق آبشستگی را ندارند. در این تحقیق، روشی سودمند برای تخمین عمق آبشستگی...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دانش آب و خاکجلد ۲۴، شماره ۲، صفحات ۱۱-۲۰
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023